Lecture 1:
We start with some trivial definitions.

A mathematical statement is a sentence like 1+1=2 that can be true or false. For example 2+2=5is a
statement, just not a true statement.

A proof is a sequence of true statements establishing a conclusion. You’ve all seen them before.
(Well, | guess except for proofs by contradiction, those are a sequence of false statements
establishing a conclusion)

We prove things to know they are true and why. When we prove things, we need to be careful to prove
the right things. We should not prove “if B then A” instead of “if Athen B”.

Alemma is a statement we prove first then use for a larger proof.
Notation:

The set of natural numbers {1, 2, 3, ...} is denoted by N

The set of integers{..., -3,-2,-1,0,1, 2, 3, ...} is denoted by Z

The set of rational numbers (Numbers that can be written as an element of N divided by an element of
Z) is denoted by Q. However, the ancient greeks realized that not all numbers were of this form. The
length of the diagonal of a unit square is V2, which is a real number that when you square it you get 2,
and this provably cannot be written as%where a and b are integers. Apparently, and this may be a

legend, someone in the ancient greek times was drowned as a punishment for saying that irrational
numbers existed, because all numbers were thought to be rational.

The set of real numbers is denoted by R.
The set of complex numbers is denoted by C.

The square root of 2 is a solution to the equation x? — 2 = 0. A natural question is whether every real

number is the solution to a polynomial with integer coefficients. It turns out that this is not the case —
There exist transcendental numbers, which are defined as numbers where this does not hold. We will
prove this later.

One principle with proofs is that if we can find a counterexample to a statement, we immediately
know that itis false, for example:

CLAIM: If 9 divides n? then 9 divides n.

COUNTEREXAMPLE: 9 divides 32 but 9 does not divide 3, so the claim is false.
More notation:

If Ais a mathematical statement, then we write 7A to mean “Not A”.

If A and B are mathematical statements, we write AVB for “A or B” and AAB for “A and B”. We write A=B
for “Aimplies B”, A<B for “B implies A”, and A&B for when A and B imply eachother, which means A
and B are equivalent. This is often written as A iff B or Aif and only if B.

If A=B, then a counterexample is an example of AA™B. In plain english, this is saying that a
counterexample to A implies B is a situation where A is true and B is not true.



Also, if we want to prove A=B we can often prove instead that "B=-A. This is because if A implies B,
then whenever B is false, it must be that A is also false, since A implies B. Similarly, "B=7A implies
A=B so the 2 notions are indeed equivalent. This is called the contrapositive

Example:
Claim: If 2 divides n? then n is even.
Proof: We will prove the contrapositive, ie if n is odd then n? is odd.

Since nis odd, there is an integer k such that n=2k+1. Thenn? = (2k + 1)? = 2(2k® + 2) + 1 by
simple algebra, which is also odd. So done.

More notation:

V¥ means “for all”

3 means “there exists”
s.t. means “such that”.

Recall that for sets, AUB is the union, ie the set of everything in A or B, ANB is the intersection, ie all
elementsin A and B, and a€EA means a is an element of the set A, and ASB means A is a subset of B,
and AcB means A is a proper subset of B (ie A is a subset of B and A does not equal B).

If a<b and a and b are real numbers, The interval (a,b) is all hnumbers between a and b not including a
and b. This is called an open interval. [a,b) is the same interval with a included. (a,b] is the same
interval with b included. [a,b] is the same interval with both a and b included, ie a closed interval.

Example:

VXER(IYER s.t. y<x) means that for all real numbers x there exists a real numbery such thaty is less
than x.

You have to be careful about the order of these quantifiers. The statement

JyeR(Vx €R s.t. y<x) is saying that there exists a real numbery that is less than all real numbers x,
which is obviously false (if there were such ay, the case when for example x=y-1 causes a
contradiction), while the above statement is obviously true (as you can pick for example y=x-1).

Also sets are collections of mathematical objects that are equal if they have the same elements. This
is obvious

Lecture 2:

When | say a statement, | need to unpack the hidden meaning. For example, if | say that
x? — 5x + 6 = 0 has solutions x=2 and x=3, | am implicitly saying

1. Those are solutions
2. Those are the only solutions

Also, I will now give a false proof that will give some important lessons.

Claim (which is obviously nonsense): Every positive real number is greater than or equal to 1.



“Proof”: Let r be the least positive real. Then eitherr<1, r>1 orr=1. Ifr<1,then 0 < r? <,
contradicting the assumption that ris the smallest positive real. Since this is a contradiction, we
cannot have r<1.

The reason this is wrong is because:

1. What| have really proven is that the smallest real number does not exist, so we cannot say “Let
r be the least positive real”.
2. Forthisreason, itis important that we carefully justify everything.

Now, let’s make a truth table for statements A and B:

A B AVB ANB A A=B B=A ASB
False False False False True True True True
False True True False True True False False
True False True True False False True False
True True True True False True True True

Now hopefully columns 3-5 are obvious. In column 6, we have thatif Ais false, then Aimplies B is true
because A implies B is saying that B is true if A is true but that if Ais false it does not matter so the
statement is vacuously true. Similar for column 7. Then the last column is saying that A implies B and
B implies A.

In fact, now one can check using a truth table like this that indeed “A implies B” is the same as “Not B
implies Not A”.

Definition: Difference
If Aand B are sets, A\ B means the set of all elements of A not contained in B.
Proposition about sets :

1. Unionis associative, ie AU(BUC)=(AUB)UC
2. Intersectionis associative, ie AN (BNC)=(ANB) NC
3. Union and intersection are distributive, ie AU(BNC)=(AUB) N (AUC)

Proof: You can easily verify these by shading in the appropriate areas of a venn diagram, or by
checking using a truth table. I'll do #3 as an example.

XinA | XinB | XinC | XinBNC | Xin AU(BNC) | Xin AUB | Xin AUC | Xin (AUB)n(AUC)
No No No No No No No No
No No Yes No No No Yes No
No Yes No No No Yes No No
No Yes Yes Yes Yes Yes Yes Yes
Yes No No No Yes Yes Yes Yes
Yes No Yes No Yes Yes Yes Yes
Yes Yes No No Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes

As you can see, columns 5 and 8 match, as required.
Lecture 3:
Two more identities about sets that can be verified from the table

A\(BUC)=(A\B)N (A\C)



A\(BNnC)=(A\B)U(A\C)

What this means that when we’re in A, (Notin B or C) is the same as (Notin B and Not in C), and that
(Notin B and C) is the same as (Either notin B, or not in C) which makes sense.

Also, for statements A and B,
AAB=7("Av B), and
AV B=7("AAB)

The reason why is the same idea as the two set identites above. These are variations of De Morgan’s
laws.

Also, for set identites like AN(BUC)=(ANB) U (ANC) we can prove it by showing that AN(BUC) is a
subset of (ANB) U (ANC) and that (ANB) U (ANC) is a subset of AN(BUC).

Example:

If x € AN(BUC) then x € Aand x € BUC so either xisin Aand B orxisin Aand C, which means
X € (ANB) U (ANC).

Conversely, if x € (ANB) U (ANC) then x is eitherin Aand B or xisin Aand C. Either way, Xis in both A,
and either B or C, so x € AN(BUC), so done.

Notation (I know this is boring we’ll eventually stop notation and start doing interesting stuff):
If A1, A,, ..., A,, are sets, with n possibly infinite, then we can write

*_, A, for the intersection of the sets, ie the set of elements in all the A’s.
We can also write U}'_, A, for the union of the sets, ie the set of elements in any of the A’s.

Given anindex set | and a collection of sets denoted by A; we can write U;¢; 4;, and same for
intersections, kind of like we do sometimes for sums.

Given sets A and B we can form their cartesian product AxB, which is the set of all ordered pairs (a, b)
withainAandbinB.

We could also have sets of ordered triples like (a, b, ¢). In fact, the set of ordered pairs (x, y) with x and
y real numbers corresponds exactly to the standard two dimensional plane.

Definition: The power set of a set A is the set of all subsets of A. For example, the power set of the set
{1,2}is the set{@, {1}, {2}, {1,2}}.

Note: We can define subsets of other sets by saying X = {x € A such that something}, but we cannot
define X ={x such that something}. There is no universal set of any kind, and we should only construct
sets from finite sets or known sets. The reason is to avoid stuff like definingY = {x st xis a set and x & x}
as this is known as russell’s paradox. If YEY then by definition Y&Y but if YEY then by definition YEY.

Also a finite set has size nif it has n elements. A set is defined to be finite if its size is a natural number.

A function from a set Ato a set B is a rule that assigns each element of A to a single element of B, and
yeah we’ve seen before what a function is. We can also think of a function as a subset of AxB
consisting of all the ordered pairs of the form {a, f(a)} fora in A.



We can write a function like f: R —» R:x = x2.Thisis a function. However, f:R - R:x = x"lisnota

function since 0 is not mapped to anything, and: R —» R: x » +./|x| is not a function because each
input except for 0 maps to 2 outputs.

Definition: If we have a function that maps elements ain a set Ato elements b in a set B, then the
image of an element a is f(a). The pre-image of an element b in B is the set of elements xin A such that
f(x)=B.

Example: If f(x) = x? then the image of 2 is 4, but the pre-image of 4 is 2 and -2.

Also, we can define images and pre-images of sets in the way you would expect. For example, if
f(x) = x? then the image of (2,3) is (4,9) and the pre-image of (4,9) is (-3,-2)U(2, 3). Notice that the
pre-image of an image is not the original thing.

Lecture 4:
More examples of images:

The image of (-1, 4) under the function x? is [0, 16) and the pre-image of (-1, 4) under that same
functionis (-2, 2).

Definition: An ordered pair is a set (a, b), or {(a, b), a} with the second element to specify which
comes first. We can also have ordered triples, like (a, b, c), or more.

Definition: Afunction is injective if every output that is mapped to is only mapped to by a single input.
Equivalently, fis injective if f(b)=f(a) implies b=a. These functions are nice because we can cancel
them while doing algebra without running into issues.

Definition: Afunction is surjective if every output in the codomain gets mapped to at least once.

Here are images from the internet to illustrate this:

Surjective Not surjective

Injective Not injective

g | ﬂl

Zhiz|




Definition: A bijection is a function which is both injective and surjective. This is a one-to-one
mapping where every output is mapped to by exactly one input.

Definition: A permutation is a bijection from a set X to itself. This can be thought of as re-ordering the
elements of X.

Note that it is important to specify the domain and range of a function. This is often implied, but a
question like “is x? injective” is meaningless, since the answer is yes in the natural numbers and no in
the real numbers.

We denote the size of a set A using |A| or #A. We observe some facts which are obvious for finite sets:

- |AJ<|B| if there is no surjectionfrom Ato B

- |A]>|B| if there is no injection from Ato B

- By definition, |A|=|B]| if and only if there is a bijection from A to B, and if the sets are finite then
any function from A to B is injective if and only if it is surjective.

Important note: A being a subset of B that is not B itself only implies A is smaller than Bif Aand B are
finite. For example: if Ais the even integers and B is the integers, then A is a subset of B, but they are
the same size as simply mapping each element of A to the element in B equal to half of that element
gives a bijection.

In level 6, in order to show something to do with intervals in probability, we proved that |R| > |N| using
Cantor’s diagonal argument.

A function X to X where every element is mapped to itself is called the identity function.
A sequence can be interpreted as a function a,,: N —- R.

Addition (+) can be thought of as a function from N * N — N since it takes in two natural numbers and
outputs a third. In general, a binary operation is a function like this on a set Xfrom X * X — X.

Definition: For a set X and a subset Y of X, the indicator function, denoted i, is definedtobe 1if Aisin
Y and O otherwise.

Here are some facts:

i) If the functions iy and i are the same then A and B are equal, and the converse of this is
also true.

ii) isng = l4lp. This can be verified by going through the different possibilities.

iii) lqup = g + i — ixip. Again one can easily verify this.

iv) ixa=1-1y

Another way to see (iii) is the following:
laup = iX\((X\A)n(X\B)) =1- i(X\A)n(X\B) =1- iX\Aix\B =1-(1—-in)A—ipg) =iy +ip—ialp
Lecture 5:

We can have composite functions. This is denoted by f o g to mean f(g(input)). This is clearly
associative: (f o g) ch=f (g(h(input))) =f o(g oh)



Definition: A function f is invertible if there exists a function gsuchthat f o g = g o f = identity,
and itis the case that if f goes from A to B then g goes from B to A.

Example: the function x+1 on the natural numbers is not invertible because if we try to make x-1 the
inverse, g(1) would have to be 0, as otherwise you couldn’tadd 1 and get 1, so f o g could not be the
identity.

If g o f = identity then gis called a left inverse of f. If this is the case, f must be injective, since if
f(a) = f(b) then g(f(a)) = g(f(b)) soa=bsince g o f = identity, so we satisfy the injectivity
criterion of being able to cancel the f.

Conversely, if fis injective then there is a left inverse. We construct this as follows: For each element
in the range of f, send it back. For elements not in the range, pick any element to send it to. One can
easily check that this works: g(f(a)) has a sent to something in f’s range then sent back.

If we have arightinverse, ie f o g = identity then we can conclude that f must be surjective. If B is
the domain of g and this is equal to the image of f o g, then since f o g = identity this implies
everything in the domain of B gets hit, and thus everything in the image of f o g, and thus f gets hit, so
fis surjective.

Conversely, if fis surjective, define g to take every element in the range of f back to any element (which
we pick) that maps to that element in the range. Doing so will give a right inverse.

Therefore, a function is invertible exactly when it is bijective.

f~1(A) where Ais a set is often used as notation for the pre-image of A.

Definition: Arelation on a set X can be thought of as a subset R of X*X. We write aRb if (a,b) is in R.
Examples of relations on the natural numbers:

1. aRbif aand b have the same last digit
2. aRbifa<b

3. aRbifadoesnotequalb

4. aRbif a=b=1

5. aRbif|a-b|<3

Definition: A relation is reflexive if every element is related to itself (ie aRa for all a).
Definition: A relation is symmetric if for every a and b in our set aRb implies bRa.

Definition: A relation is transitive if for every a, b, c in our set aRb and bRc implies aRc.
Definition: Arelation is an equivalence relation if it satisfies all three of the properties above.

Here is atable based on the 5 examples above which you should stare at until you can convince
yourself that it is correct:

Example 1 Example 2 Example 3 Example 4 Example 5
Symmetric Yes No No No Yes
Reflexive Yes No Yes Yes Yes
Transitive Yes Yes No Yes No

Lecture 6:




Theorem: If ~ is an equivelence relation on a set X we have a bunch of pairwise disjoint subsets of X
whose union is all of X called equivelence classes such that two elements are related if and only if
they are in the same class.

Proof:

Suppose we have such sets. One easily checks that a relation defined as being satisfied if two
elements are in the same class is an equivalence relation. Now suppose we have an equivelence
relation. Suppose [x] is the set of elements y that are related to X, ie y~x or x~y by the symmetry
property. And x~x by reflexivity, so every elementis in an equivelence class, and we just have to prove
that they are pairwise disjoint. Now suppose there is an element z, then we just have to prove that
either [x]=[z] or [X]n[z] is the empty set. Suppose there is an elementy in both [x] and [z], thenyis
related to both x and z, which by transitivity must be related to eachother, meaning x must be related
to z. Ifan elementwisin[z] then wis related to z and thus related to [x] so it is also in [x]. Therefore, [Z]
is contained in [x] and by the same logic [x] is contained in [z], so if they have non-empty intersection
they are the same.

We define the quotient of X by an equivalence relation R as X/R=The set of equivelence classes.

In example 1 from lecture 5, the equivelence classes were the set of natural numbers with a particular
last digit.

The map (which just means function) X = X /R is called the projection map.

Example: On the set Z * N we can define an equivelence relation by (a,b)R(c,d) if ad=bc, or
equivelently a/b=c/d, which is an equivelence relation since it can be easily seen that the equivelence
classes correspond exactly to the rational numbers.

More on binary operations:
A binary operation . is commutative if it is always true that A.B=B.A
Itis associative if itis always true that A.(B.C)=(A.B).C

A binary operation . is distributive over a binary operation ~ if it is always true that A.(B~C)=(A.B)~(A.C),
ie they interact the same way multiplication interacts with addition.

Now we will show the peano axioms to define the natural numbers:

The set of natural numbers N has an element which we call 1. It has a function called S that we think
of as adding 1 such that Sis injective (So we cannot loop back around to a previous element by
repeatedly applying S) and every element that is not 1 is S(somethingin N). Also, so that we ensure we
only have the natural numbers (as something like the set N U (Z + 0.5) satisfies these axioms), we
have induction as an axiom: If Ais a set with 1 € A and the property that if a € A then s(a) € A then A=N.

We define addition as n+1=S(n) [A1] and n+S(m)=S(n+m) [A2] and multiplication defined as n*1=n and
n*S(m)=n*m+n. We define 0 such that a+0=a always. In theory, we can prove all the obvious
properties of these operations. Although we do not need to do that in this course as itis ok to do math
considering associativity of addition and multiplication as well as the distributive property to all be
given, | will prove that (a+b)+c=a+(b+c) always from the Peano axioms as an example, by showing a
proof from wikipedia. The proofis in the image below:



For the base case ¢ = 0,
(a+b)+0=a+b=a+(b+0)

Each equation follows by definition [A1]; the first with a + b, the second with b.

Now, for the induction. We assume the induction hypothesis, namely we assume that for some

natural number ¢,
(a+b)+c=a+(b+c)
Then it follows,

(a+b)+3(c)
=8((a + b) + c)[by A2]
= §(a + (b + ¢)) [by the induction hypothesis]
=a+ S(b+c) [byA2]
=a+ (b + S(c)) by A2]

In other words, the induction hypothesis holds for S(c). Therefore, the induction on ¢ is complete.

Lecture 7:

Definition: An Ordering on a set is a way to compare elements, which satisfies that exactly one of a=b,
a<b and a>b holds, and just to make sure it is actuallty an ordering in the way we expect, we have that
ordering is transitive (a<b and b<c implies a<c, and similarly for >). An ordering is a Total Ordering if
any two elements can be compared. An example of a partial ordering is an ordering on sets such that
A<B if A is a subset of B and not equal to B, which satisfies the rules above but {1} and {2} cannot be
compared.

The axiom of induction given above is called the weak principle of induction (WPI). The strong
principle of induction (SPI), which we saw in the level 4 proof for uniqueness of prime factorization,
states that if itis the case that {1, 2, 3, ... ,n} being a subset of a set A implies that n+1 isinthe setA,
then all natural numbers are in the set A. We will prove some things that seem useless but are useful
because they can apply to other sets with other axioms defined.

This is confusing, as we have a (Statement 1 implies Statement 2) implies (Statement 3) situation.
Theorem: WPl implies SPI

Proof: Apply WPI to the set of numbers n such that{1, 2, 3, ... ,n}is a subset of A.

Theorem: SPI implies WPI

Proof: If nisin Aimplies n+1isin Athen clearly {1, 2, 3, ... ,n} being a subset of A also implies n+1isin
A so by strong induction A has all the natural numbers.

Definition: A total ordering on a set is called well-ordered if it has the property that any subset has a
least element with respect to this ordering.

The well-ordering principle (WOP) states that the usual ordering on N is a well-ordered. This is
obvious, and we will prove it shortly. An example of a total ordering that is not a well ordering is Z with
the usual ordering: The set of, say, even integers does not have a least element: they keep going down
forever. However, we can define an ordering on Z that is a well ordering, where we say the order of the
elementsis (0,-1,1,-2,2,...)



Theorem: SPlimplies WOP

Proof: Suppose there is no least element of a subset P of a set where SPI holds. Then consider the set
Q of elements that are not in the set: 1isin Q otherwise 1 would be the minimal element of P. 2 is also
in Q or else 2 would be a minimal element of P, and soon. {1, 2, 3, ... ,n} beingin Q implies n+1isin Q
otherwise that would be the least element of P. So by strong induction, we’re done.

WOP does not imply SPI because many “proofs” of this state the principle of strong induction as “n
beingin a set A if everything <nis in a set A imples everything is in the set A” when the proper
statementis that“{1, 2, 3, ... ,n} being in a set A impying S(n) is in the set Aimplies everything in the set
A”, wherethe problem is 1 may not always be the unique number that is not a successor, this is just
the case for the natural numbers. Other “proofs” also assume 1 is the unique nhumber thatis not a
successor. This statement is not always true when we get onto ordinals — Ordinals are beautiful and
one of my favourite things in maths but unfortunately they do not show up until later on in the course
so | strongly encourage you to look into them yourself.

Example: We can prove using the well ordering principle that every number can be factored into
primes (although we will not prove uniqueness). Let S be the set of counterexamples, then S has a
least element m. If mis prime, this is a contradiction, and if not then by definition we can write m as
ab, where a and b are less than m and thus can be factored into primes, so we also have a
contradiction.

Theorem: A power set of a set with size n has 2" elements.

Proof: For each of the n elements, we can either put it or not putitin a subset which there are 2 ways
to do. Choosing between 2 things to do n times gives a total of 2™ choices.

Corollary: (8) + (711) + (721) + 4+ (Z) = 2™ because we can interpret LHS as the number of subsets

with 0 elements + the number with 1 elements + the number with 2 and so on.
Lecture 8:
ny m-—1 n—1
(k>_(k—1>+( k )
Since we can either choose or not choose the last element.

I think | put this in a previous level but I’m putting it here just in case.

We can obtain Pascal’s Triangle by having each element be the sum of the two above it.

N\

1 1
Pave!
1/§f§/ﬁ
AAAN
1 4 6 4 1

Because of this, the number in each circle counts the number of ways to get there, since we can get
there from either of the circles above it.



. . (n L . .
In fact, the k’th number in the n’th row is (k) This is because we have to take k right arrows in order to

get there and there are n rows that can happen in and we need to choose k of those rows to take our
right turn, if that makes sense.

And the formula (Z) = k'(:ik)' as well as the binomial theorem is known from A level. When n is large,

k _ — —
this is well approximated by % since it can be written as nin-1)n ;)'"(n k+1).

Observe that |[AUB|=|A|+|B|-|ANB]|

Lets try to count JAUBUC]. If we write this as |A|+|B|+|C| we double count the stuff in the intersections.
If we then write |JAUBUC|=|A|+|B|+|C|-|ANB|-|BNCJ|-|CNA]|

But now we would not be counting anything in ANBNC. The correct expression is
|A]+|B|+|C|-|ANB|-|BNC|-|CNA|+|ANBNC]|

Theorem (Inclusion-Exclusion principle):

Let Sy, 55,53, ..., Sy, be finite sets, then

|S1U Sy U S3U.L.US,| =XIS4l = 21SaNSel +XISanSg NSl —XISanSg NS NSp| + -
where the sums range over the unordered tuples (A, B, C, ...)

Equivelently, Y, is,y s,us5u.us, = Dlsy — Dlsalsy T X lsalsglse —

Proof:

Letx € (5; U S, U S3U ...US,). Suppose x lives in exactly k of the sets.

Then the number of sets that x lives in is k (obviously). The number of distinct pairs of sets that x lives

inis (l;) The number of distinct triples of sets that x lives in is (k), and so on.

3

Sothe value of ¥ is, — X is, is, + X s, isylis, — = isk — (lz‘) + (g) _ ('Z) 4o (=K (i)

2 3 4
which therefore equals 1 as required. The LHS of the indicator function equation is 1 trivially since x is

=1- <1 —k+ (k) — (k) + (k> — et (1)K (i)) =1- (1 + (—1))k by the binomial theorem,

in the union. If x is not in the union both sides are trivially 0.

Notation: We say a|b to mean a divides b, meaning there is an integer ¢ such that ac=b. We can also
say that ais a divisor or factor of b, or b is a multiple of a.

Definition: A composite number is a number that is not prime.
Lecture 9:

We saw a few examples of strong induction at the beginning of Level 4, including the statement that
every number is the product of primes in a unique way up to ordering. We have seen a proof by
contradiction example in A level that there are infinitely many primes.



Proposition: Let n and k be natural numbers, then we can divide n by k and get a remainder less than
k, meaning we can write n=gk+r where r is non-negative less than k. This is unique as if we change qr
is no longer in that range.

Hopefully you can see that this is true, if not just divide both sides by k, and then use the fact that any
real number has an integer part and a fractional part less than 1.

Consider two numbers a and b, then they have a highest common factor (hcf), also called a greatest
common divisor (gcd).

Now we will demonstrate Euclid’s algorithm by example to show how to find the highest common
factor of two numbers.

Example: Suppose we want to find hcf(420, 792), which we will call c.

This procedure will resemble what we did for polynomials in Level 4 to prove partial fraction
decomposition.

Clearly, c divides 792 and 420, so it also divides their difference which is 372. Our new number (372) is
constructed as the remainder of the bigger number (a or 792) when divided by the smaller number (b
or 420). This is equal to r=a-qb by rearranging the equation above, therefore any common factor of a
and b also divides r and the converse is true as well. Specifically, c is hcf(420, 372) because if there
was a larger common factor of 420 and 372 it would be a common factor of 420 and 792 as well which
contradicts c being the highest. At each step when we repeat this, the remainder will be smaller than
our smaller number so we will eventually reach 0 in finitely many steps since everything is an integer.

Now we do the same for 372 and 420: We find the difference which is 48, then hcf(372,48)=c. Now we
keep subtracting 48 from 372 until we can’t anymore, then the final remainder is 36, so we get
hcf(36, 48)=c. Now continuing, we get hcf(36, 12)=c then hcf(0, 12)=c, so c=12.

Corollary: Any common factor of a and b divides c:=gcd(a,b)

Proof: By doing Euclid’s algorithm, we can see that all common factors of a and b are common factors
of 0 and c since we explained above that the common factors stay the same at each step, thus any
common factor of a and b is a common factor of 0 and ¢, and therefore divides c.

Therefore, we can define gcd(a,b) as the unique number dividing a and b such that any common factor
of aand b divides gcd(a,b), as itis now clear that this exists and is unique.

Also, here is a visual interpretation of the Euclid algorithm with 38 and 16 as an example.
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Lecture 10:
Definition: We say numbers are coprime or relatively prime if their highest common factoris 1.

Geometric interpretation: if we have an A*B grid rectangle with A and B coprime its diagonal will not
intersect any grid corners.

Now we will do something similar to what we did for polynomials in Level 4:

An example of the euclid algorithm on coprime numbers (52 and 87) is as follows:

87=1*52+35
52=1*35+17
35=2%17+1

Now we get to 1. Let’s work backwards from 1:
1=35-2*17

1=(52-17)-2*(52-35)
1=(52-(52-35)-2*(52-35)
1=52-(52-(87-52)-2*(52-(87-52))
Collecting like terms will give
1=3*87-5*52

In general, we can always do a procedure like this: If A and B are coprime we can run Euclid’s
algorithm and work backwards from 1 to get integers x and y with Ax+By=1. More generally, we can find
integers x and y with Ax+By=hcf(A,B). The fact that we can do this is called Bezout’s identity. This is
exactly what we did for polynomials in Level 4 when we showed that a linear combination of two
polynomials can equal their highest common factor. This proves existence of such x and y and also
gives a nice way to find them.

Alternative proof of Bezout’s identity:

Let h be the least positive integer that can be written as Ax+By for integers x and y. h exists by the well
ordering principle. Clearly, all common factors of A and B are a factor of Ax+By and thus h. Now
suppose that h does not divide A: Then we can write a=gh+r with 0<r<h and g an integer. So
r=A-gh=A-(Ax+By), contradicting the definition of h since h was the smallest positive integer that can
be written as Ax+By for integers x and y but r is smaller. Therefore h divides A, and by similar logic h
also divides B. Therefore, h is a common factor of A and B and all common factors of A and B divide h,
so his the highest common factor of A and B, so done. This proof tells us that the integers x and y exist
but does not give us a way to find them.

Now we can answer questions like: Does there exist x and y with 160x+72y=33. | mean, this one is
obviously no because the left hand side and the right hand side is odd, but the pointis such integers
exist exactly when the number on the right is a multiple of the highest common factor of 160 and 72,
orin general the numbers A and B we start with. The reason is if the right is divisible by h=hcf(A,B) we
can write it as fh so we can find a solution for when it equals h and multiply it by f. Conversely, if h



does not divide the right hand side, then we can write it as fh+r with r less than h, but then fh+r and fh
has a solution, so the difference gives r as a solution which is a contradiction.

Proposition: If p is a prime and p divides ab then p divides a or p divides b.

Proof: Suppose p does not divide a. Then hcf(p,a) is 1 since the only factors of pare 1 and p and p
does not divide a. Then there exists integers x and y with px+ay=1, so pbx+aby=b. But p divides ab, so
therefore p divides the left hand side, and therefore p divides b.

Corrolary: if p|a;a,as ...a, and pis prime then by a simple induction, p|a; for some i from 1to n.

Corollary: Now we can prove uniqueness of prime factorization in an alternative way from the level 4
way. Suppose n = p;p; ...Px = 192 --- q;, for primes p and q, and suppose these primes are in order
from least to graetest. Then p, divides g4 g5 ... q; and thus divides one of the g’s by the previous
corollary. Thus, one of the g’s equals p; since p, divides it and they are prime. So we can cancel that q
and p, from both sides, and we can keep doing this and eventually we will be left with 1=1, and so it
will become clear that the p’s and g’s must have been the same at the begininng. If we do this by
strong induction, then by cancelling one of the p’s we end up using the strong induction hypothesis to
deduce unigueness of the rest.

Lecture 11:

Note: There exist number systems in which factorization is not unique. An example is the set of
numbers x + iv/3y with x and y integers. In this system 4 = 2 * 2 = (1 +v/—=3)(1 — v—=3). Therefore

the theorem above should not be considered “obvious”, since 2 and 1 + v —3 are “prime” in this world
since they cannot be further factored into integers that are not just 1 or -1.

Example: We can easily list all the factors of 233711: They are just all the numbers
20=x=330=y=<7110=z=1 |f there were other factors, this would imply a factorisation of 233711 that is
different, contradicting uniqueness. In fact, the number of factors of 233711 must therefore be
(3+1)(7+1)(1+1)=64, since we multiply together the number of choices for each of the powers. This is
how we can find the number of factors of any number.

Example: Recall from math GCSE that the common factors and common multiples of numbers a and
b can be found by taking the prime factorisation of a and b and taking the minimum and maximum of
the powers respectively.

Example: Lcm(a,b)Hcf(a,b)=ab because the power of some p in Lcm(a,b)Hcf(a,b) is the larger of the
power of pin a and b plus the smaller of the power of p in a and b, which is exactly ther power of pin
ab. Note that every other common multiple of a and b must me a multiple of Lcm(a,b), since for each
p, the exponent of p in the prime factorisation must be at least that of the power of pin Lcm(a,b).
Alternatively, say for example 10 was the lcm of 2 numbers and so was 45 which is not a multiple of
10, then so would 45-4*10 contradicting the assumption that 10 is the lcm, essentially the remainder
would be a common multiple.

Example: (Another proof of infinite primes by paul erdos the GOAT) Suppose there are k primes

P1, D2, -, Pi- Now consider N := p{lpgzpf p,’c"‘ = mzpilpézp;f p,i(" where each of the i’s are 0 or 1.

Now we know that m < +/N, so there are at most VN possibilities for m, so there are at most VN2
numbers of the form mzpilpizp? p,i(" that are less than N, so for N > 4% we contradict the fact that



every number less than N can be written in this way, so pick a number that cannot, then this number
must have a prime factor not amongst our finite set of primes.

This is stronger than Euclid’s proof as it tells us that the k’th prime must come before 4.

Definition: We define a = bmodn if a and b differ by a multiple of n. Alternatively, b is the remainder
when a is divided by n.

Examples: 16 = 2mod7,83497 = 7mod10
Proposition: a+b mod n =(a mod n) + (b mod n)

Proof Any number which is the sum of an a mod n and b mod n number is (a+xn)+(b+yn)=(a+b)+(x+y)n
and therefore is an a+b mod n number.

Proposition: a*b mod n = (a mod n) * (b mod n)
Proof: Similar to above, (a+xn)(b+yn)=ab+(bx+ay+xyn)n.
Example: 2a? + 3b3 = 1 does not have a solution with a, bin Z. The reason is as follows:

Consider 2a? + 3b3mod3. Then 3b3 = 0mod3 so we just have to consider 2a?mod3. If ais a multiple
of 3, thisis 0 and not 1 which is not possible. If ais 1 mod 3, we have 2(3k + 1)?mod3 =

18k? + 12k + 2mod3 = 3(6k? + 4k) + 2 mod 3 = 2 mod 3 which is again not 1 mod 3. If ais 2
mod 3, a similar rgument shows that 2a? + 3b3mod3 = 2mod3 and therefore 2a? + 3b3 can never be
1mod3 which is a contradiction so 2a? + 3b3 = 1 must have no integer solutions. Note that if two
numbers are the same mod something, we say they are congruent mod that something.

Lecture 12:

Example: Lets solve 7x = 2mod10. We can multiply both sides by 3 to get 21x = 6mod10. But then
20x is 0 mod 10 so we can subtract it to get x = 6mod10.

Given integers a and b, we say that b is an inverse of a mod n if ab =1 mod n. We say a is invertible
mod n, or ais a unit mod n, if it has an inverse. From the previous example, 3 and 7 are inverses of
eachother mod 10. These either come in pairs or a number is its own inverse.

Example: 4 does not have an inverse mod 10, such an inverse would have to be a number that can be
multiplied by an even number to get an odd number.

Remark: If ais a unit mod n then its inverse is unique mod n.

Proof: Suppose there exists 2 inverses b and b’ such that ab=ab’=1 mod n. We know that
b=bab=bab’=b’ mod n, since ba=1 mod n.

Corollary: If ais a unit mod n and ab=ac mod n then b=c mod n (multiply by the inverse of a). ie we can
cancel units.

This is not true for non-units: 4*3 and 4*8 are the same mod 10 but we cannot divide out the 4
because 3is not congruent to 8 mod 10.

Proposition: Let p be prime. Then every non-zero residue mod p is a unit mod p.

Proof: If ais coprime to p, then Bezout’s identity asserts the existence of integers x and y with ax+yp=1,
so X is aninverse to a mod p.



In fact, by the same logic, we deduce that ais a unit mod n if and only if a is coprime to n.

Corollary: If ais coprime to n, then the congruence ax=b mod n has a unique solution x mod n, where
x=b*(inverse of a mod n).

Example: Because 365 and 7 are coprime, it means that Christmas can fall on any day of the week.
This is because the equation 365x=kmod7 has asolution for any k.

If a and n are not coprime, then if ax=b mod n then this has a solution if and only if b is a multiple of
hcf(a,n), since hcf(a,n) must divide ax-b as n divides ax-b. But hcf(a,n) divides a and ax-b and thus
must divide b. Conversely, for the same reason as above Bezout’s identity asserts the existence of a
solution in the case that b is a multiple of hcf(a,n). If hcf(a,n)=d, then the solution to ax=b mod n is

exactly the solution to Sx = gmod Z. This is because we can divide everything by d.

Example: Lets solve 7x=4mod30. Hcf(7,30)=1 so 7 has an inverse. It turns out that this inverse is 13, so
we get that x=4*13mod30=22mod30.

This is unique: Suppose x’ is also a solution with x’ not equal to 22 mod 30, then we have that
7x’=4mod30. But then 7x and 7x’ are the same mod 30, so multiplying by 13 on both sides we have
that x and x’ are equal mod 30.

Example: Lets solve 10x=12mod34, then hcf(10,34)=2 so the solutions are the same as the solutions
to 5x=6mod17, multiplying by 7 on both sides gives x=8mod17, so this is our solution.

Example: Lets solve the simaltaneous equations x=1mod4 and x=2mod3.

We know that x=1, 5 or 9 mod 12 and that x=2, 5, 8 or 11 mod 12 from each of the above equations.
Therefore x=5mod12 is the only possibility.

However, the simaltaneous congruences x=1mod4 and x=2mod6 do not have a solution because x
has to be both odd and even.

Theorem (Chinese Remainder Theorem): Let m,n be coprime and a,b be integers. Then the
simaltaneous congruences x=a mod m and x=b mod n has a unique solution mod mn.

Proof: We will do this next lecture.
Lecture 13:

Proof of Chinese Remainder Theorem: By Bezout’s identity, there exists integers s and t satisfying
sm+tn=1. Therefore sm=1 mod n, and tn=1 mod m. Now consider x=a(tn)+b(sm). Then this is
congruent to a mod m and b mod n. To prove uniqueness mod mn, suppose y is also a solution to the
simaltaneous congruences. Then y-x must be 0 mod m and 0 mod n, and since m and n are coprime,
y-xis congruent to 0 mod mn, and therefore x=y mod mn.

This can be extended by induction: If m{, m,, ..., m;, are pairwise coprime, then the simaltaneous
congruences x = a;modm,; = a,modm, = --- = qpzmodm,, has a unique solution mod mym, ...my

Definition: ¢p(n) is the number of integers from 1 to n-1 coprime to n. Equivelently, this function is
counting the number of units mod n. We define ¢(1) = 1. Eg, ¢$(9) = 6 since the units are 1,2,4,5,7,8.
When pis a prime, ¢(p) = p — 1 since everything from 1to p-1is a unitand ¢(p?) = p? — p, since
there are p non-units.



Powers mod n: 2'mod7 = 2,2?mod7 = 4,23mod7 = 1,2*mod7 = 2 and we’re back where we
started. In general, you can see that if we take powers mod a number, we must eventually get back to
somewhere we have been to before, so it will be eventually periodic.

Theorem (Fermat’s Little Theorem): Let p be a prime and a not divisible by p. Then a?~! = 1 mod p.
Proof: Since a is a unitmod p, ax = ay mod p if and only if x = y mod p.

Now consider the numbers a, 2a, 3a, ..., (p — 1)a. These must be pairwise incongruent mod p: if
ia = jamod p, then (i-j)a is divisible by p, but that is not possible —i-j<p and a is not divisible by p.
Therefore, a, 2a,3a, ..., (p — 1)a mod p must be 1, 2, 3, ... ,p-1in some order.

Therefore,a * 2a *3a * ..x (p — 1)a =12 %3 x ...x p — 1 mod p. Therefore,
aP~l(p — 1! = (p — 1)!'mod p. Since (p-1)! Is not divisible by p, it is a unit and we can multiply
through by the inverse of (p-1)! mod p to get the desired result.

Proposition: If p and q are primes, ¢(pq) = (p — 1)(q — 1).

Proof: mod pq, the ones that are not coprime are the p multiples of g and the g multiples of p, but we
have double counted the multiple of pg so we need to add that back. Then we get pg-p-g+1 which is
indeed (p-1)(g-1).

Theorem (Fermat-Euler theorem): a®™ = 1 mod mfora coprime to m.

Proof: The same way as in the previous theorem: Let nq, n,, ey M (m) be the units mod m. Then since a
is coprime to m, if we multiply everything by a we still have units mod m. We in fact have distinct units
since if an; — an; = 0 mod mthen n; = n; mod m so j must equal i.

a®™ (nynyns .. Npm)) = MMM ... Ny myMod M. Since nNynyN; ... Ny is @ product of units, we can

multiply out by the inverse to get a®™ = 1 mod m as required.

Consider (p — 1)! mod p.

Examples:

If p=3, we want 2 mod 3 whichis 2

If p=5, we want 24 mod 5 which is 4

If p=7,we want 720 mod 7 which is 6

If p=11, we want 3628800 mod 11 which is 10

Interestingly, it seems to always be -1 mod p. We will now prove that this is the case:

Proof: Suppose pis an odd prime. 1*2*3*..*(p-1) is a product of units, and the terms come in
unit-inverse pairs unless they are self-inverse. We want to determine which of these are self-inverse.

Lemma: If pis prime (This is not necessarily true otherwise, eg for n=8 this is not true), then
x? = 1 mod p implies x=-1 or 1 mod p. ie, only 1 and p-1 are self inverse units mod p.

Proof of lemma: x2 — 1 = 0 mod p implies (x + 1)(x — 1) = 0 mod p. This means that in the product
(x+1)(x-1), p must appear in the prime factorization of either x+1 or x-1, since if p divides a product ab
then p divides a or p divides b. Therefore we get the desired result.



So, in 1*2*3*..*(p-1), allthe terms 2, 3, 4, ..., p-2 can be split into unit-inverse pairs which have a
product of 1 mod p and therefore may cancel, and so we end up getting just p-1 mod p. This gives the
desired result. Example: For p=11, the pairsare 3and 4,2 and 6, 7 and 8, 5and 9.

Lecture 14:
We will now investigate when a number squares to give -1 mod p.

Example: When p=5, 2 squares to 4 which is -1 mod 5. When p=7, you cannot square a number and
get 6 mod 7 - You can see this by trying all the possibilities. When p=13, 5 squares to 25 which is -1
mod 13. No luck when p=19.

Proposition: If pis an odd prime, then -1 is a square mod p if and only if p is congruent to 1 mod 4.
Proof: Suppose p =1 mod 4. Then by Wilson’s theorem, | know that -1 is congruent to (p-1)! mod p. We

can write (p-1)! as (1)(2)(3) ... (pT_l) (IDTJr1

second half of the expression. You can see that this will not change the value mod p.

) ..(p —2)(p — 1). Lets subtract p from all terms in the

(1D(2)(A3) ... (pT_l) (— (pT_l)) ...(—=2)(—1). But since p = 1 mod 4, there are an even number of these

2
minus signs so we can cancel them. Therefore we have ((pT) !) mod pis -1. So we have constructed

such a number.
Example: For p=29, x = 14! Is a number that squares to -1 mod 29.

Conversely, suppose p=3 mod 4, or equivelently that p=(-1 mod 4). Suppose there exists z such that
z?2 = —1 mod 4. Now lets add p-3, which is divisible by 4, to the exponent. Since

-3

z** = ((z$)?)* = (=1)** = 1 mod p, we know that zP~1 = A5

Fermat’s little theorem.

)+2 = —1 mod p, contradicting

Note: Fermat’s little theorem says that 2P = 2 mod p. Conversely, if we find that 2"mod n = 2, then
there is a good chance that n is prime. However, it is not always the case. However, under 1000, the
only composite numbers which pass the test are 341, 561 and 645.

We used 2 as the base, however we could use other bases like 3 or 5 to try to weed out more
candidates. But it turns out that some numbers like 561 and 1729 are always a false positive, and
these are called Carmichael numbers. We won’t prove this, it’s just a cool thing.

Let us agree to take a message and convert it to a number somehow. Perhaps by using letters base 26.
Then we will use the RSA scheme to encrypt the message in such a way that only someone who has a
certain key to decryptit. Here is how to do that:

First, we think of two very large primes. There are ways to test for large primes, but that is beyond this
course. Fun fact: A few years ago | found 260370566°°>3¢ + 1 is prime using a computer search. As of
this lecture, it is the 9358" largest known prime.

Then let n be the product of these primes so n=pq. We will pick an exponent e which should be
coprime to ¢(n). We will publish the pair (n, e), but it is very hard to factor n if you don’t know the
factors. We can split our message into pieces M which are less than n in such a way that each Mis
coprime to n. We can send the message M®mod n, which we can compute quickly by repeated
squaring mod n. Since we can reduce mod n, the numbers don’t get too big.



To decrypt this, we need to work out the decoding exponent d. By fermat euler, we want that

ed = 1 mod ¢(n). Since e was coprime to ¢(n) we can find this using Euclid’s algorithm. Then we can
use this number d we can find M¢*4mod n = M****Mmod n, but by the Fermat-Euler theorem this is

just M mod n. Note that in order to decrypt in this way, we need to know ¢(n) which involves knowing

how to factor n. But when n is large it can take too long for a computer to factor in reasonable time.

Recall how we constructed the natural numbers using the Peano axioms. We can obtain the integers
from the natural numbers by allowing for subtraction. Formally, we could view Z as the set of
equivelence classes of NxN where (a,b)R(c,d) if a+d=b+c. We can think of (a,b) as a-b. We can
construct 0 for (1,1) and -a for (1, 1+a). We can define the rules multiplication and addition by
(a,b)+(c,d)=(a+c,b+d) and (a,b)*(c,d)=(ac+bd,bc+ad). We will not check that this works, you can do
that if you want but we all know how arithmetic works in the integers. We can view Q as the set of
equivelence relations in ZxN (a,b)R(c,d) if and only if ad=bc, and we think of (a,b) as (a/b). We can
define multiplication, addition, subtraction and division on this using formulas as above.

We can also define an ordering on the rationals in the way we expect. (ie, depending on whether
ad<bc). Next lecture we will construct the reals — This construction and its properties is fundamental
for all of real analysis, which we have done in previous levels and will do next level.

Lecture 15:

Note that for any 2 rational numbers, we can find one between them. We can do this by taking their

average, ie %. The term for this is that the rational numbers are densely ordered. However, this is not

enough due to the existence of irrational numbers, for example we know from A level that V2 cannot
be a rational number.

2
Note: if x is rational and x is an integer then it must be a square number because then we get x = %
so a® = xb? so x must be square by uniqueness of prime factorization. Similarly, if V/x is rational and x

is an integer, x must be a perfect power of n, and in fact Y/x must also be an integer.

The idea is that Q has gaps which we need tofillin. Let A be the set of positive rationals p such that

p? < 2.Then we see that A contains no largest element and no least upper bound/supremum. The
reason is that for any rational number, if we suppose itis the least upper bound, we can find one
closer to V2, which there are many ways to do, giving us a contradiction. Previously, we have taken the
fact that every bounded set has a least upper bound as obvious, but the idea is that we can construct
the reals by saying “| have decided that | want the least upper bound of the set A to exist.”, and then
the least upper bound to any bounded set of the reals will exist by construction. This is why | have said
itis an axiom.

So here is how we construct the reals: We start with 0 and 1 and have an operation + and * and an
ordering < satisfying the following conditions:

1. +is commutative and associative and adding 0 does nothing

2. *is commutative and associative and multiplying by 1 does nothing
3. ltis always true that a*(b+c)=a*b+a*c

4. Foreveryreal number, we have -x and if xis not 0, its reciprocalis real
5. Adding or multiplying 2 real numbers gives another real number



6. Forany aand b, we have exactly one of a=b, a<b or a>b, and this ordering is transitive and
antisymmetric.
7. Foranyc, a<b implies a+c<b+c and, if c>0, a<b implies ac<bc

Now this gives us all the rational numbers — We can make integers by adding and make rationals by
taking reciprocals and adding them together. In fact, the ordering above is unique. This is not obvious,
but lets get an idea for why.

Suppose 1 < 0, then 0 < —1 since we can add to both sides, which means that -1 is positive, so we
can multiply both sides of 1 < 0 by -1to get —1 < 0 which is a contradiction. So we know that 1 > 0.

Now suppose% < O.Theng < éand thus 1 < %by additivity. This contradicts that 1 > 0. Also, again by

additivity, we know that 0 < 1 < 2 < 3 < ---. The pointis for any rational numbers we can argue from
these axioms that the ordering is as we expect.

Now we get to the most important property:

8. For any non-empty subset of the reals that is boudned above (ie, there exists x greater than or
equal to everything in the set), the least upper bound is in the set (ie, any upper bound is
greater than or equal to x). This is important because we can define, say, the set of rationals
less than pi, or the square root of 2, or whatever, then just take the least upper bound.

Note that non-empty is important or the least upper bound would be negative infinity. And bounded
above is important since otherwise the least upper bound would be positive infinity.

Now given the real numbers and the ordering, we can add the square root of -1 and its multiples and
its sum with the real numbers to get the complex numbers. A decimal expansion is, for example, we
can define 3.14159265... as the least upper bound of {3, 3.1, 3.14, 3.141, 3.1415, ...}.

We can see that the integers (as defined by the peano axioms) and rational numbers are in the real
numbers. For anything, we can add 1 to get its successor, and everything is the successor of some
element as we can subtract 1. By repeatedly adding 1 we do not just get back to where we started
because otherwise we would not be able to have the unique ordering as defined above. This is the
essence of why we indeed have the integers and the rational numbers contained in the reals.

Lecture 16:

Example: The least upper bound of both (0, 1) and [0, 1]is 1. In both cases, 1 is an upper bound
(everything in the sets is less than or equal to 1) and any smaller number is not an upper bound (since
there is a number above it in the set-eg 0.99999 is not an upper bound because of 0.999995). Note
that the least upper bound is sometimes an element of the set itself and sometimes not, and sets like
(0, 1) does not even have a largest element, perhaps contrary to intuition. However, for non empty
bounded sets the supremum always exists: recall that for a set S we can write sup(S) to mean the
least upper bound of S, since we had to go all the way through all this and beyond just to prove that A
level stats works. Recall? (Have | said this yet?) that (a, b) is called the openintervalato b and [a, b] is
called the closed interval a to b. In future analysis courses we will see that open and closed intervals
have surprisingly different properties — we have seen this a bit already with uniform continuity.

| N

The set {O,%, 3,%, o) } also has a least upper bound of 1: Numbers of the form 1 — %get arbitrarily

close to 1 but never reach it. We will do some things and then come back to this example.

|



Proposition: The natural numbers are not bounded above. This is obvious, but we will prove it from the
definitions above.

Proof: Suppose on the contrary that the natural numbers are bounded above. Let c=sup(N). By
definition, c is a least upper bound, so c-1 is not an upper bound for N. This means there is a natural
number greater than c-1. But then the successor of that number is greater than ¢, whichis a
contradiction. So done. We see that the construction of the real numbers is kind of genius in the
sense that we need all of these obvious things to actually hold.

Corollary: For any real number t>0, there exists a natural number n such that 1/n<t. This and the
proposition above is known as the archimedean property.

Proof: % is real since we have defined it to be the case that every non-zero number has a real
reciprocal. This is not an upper bound for the natural numbers, so pick a natural number n greater
nt~!  nt71
<
t

since t™! < n.nt~!is positive because we can multiply it by t which is positive and then get a positive

. . 1. . .1 .
thanit. Then consuder;whlch must be less than t. If we’re being pedantic, - < t since

number n.

We have of course seen what it means for a sequence to converge, since we have had to do this to
justify some A level maths things, but we will come back to this.

Remark: A set Sis bounded below if -S is bounded above. This is obvious. And if this happens S must
have a highest lower bound (minus the least upper bound of -S). We can denote a highest lower bound
of S by inf(S) (I might have shown this before I’m not sure).

Corollary: inf(1/n)=0 because by the corollary above because 0 is a lower bound and if t>0 is a lower
bound this is not possible since we can find something smaller than it. Therefore the set above which
we said we would come back to indeed has 1 as its supremum.

Note: We think the real numbers go on forever, but in fact there are no infinitely large or infinitely small
numbers that are real. This is also counterintuitive but it is very important to get used to these
counterintuitive ideas.

Note: v2 actually exists. The set of rational numbers which squares to less than 2 has a least upper
bound. What is this least upper bound squared? We need to prove thatitis actually 2. Of course, this
number is c exists and is between 1 and 2.

Supposec? < 2.For0 <t < 1,consider(c+t)? =c?+2ct+t? <c?+4t+t(sincet<1,c<?2)

2—c? .
; ), then c is no longer an upper bound for our set.

= c¢? + 5t. Infact, if tis sufficiently small (eg, t =

Similarly if c2 > 2, then consider (¢ — t)? = ¢? — 2ct + t? < ¢? — 4t + t? < ¢? — 3t, so if we pick
2_

t= %, then we have an upper bound ¢ — t smaller than c, which is again a contradiction.

Note: A similar proof shows that many other gaps in the real numbers are filled.

Note that one can easily see that a number is rational if and only if adding it or multiplying it by any
rational number preserves the fact that it is rational. We can see this since adding or multiplying
integer fractions gives another integer fraction.

Lecture 17:



Proposition: The rational numbers are dense in the reals. This means they are everywhere, ie between
any 2 numbers we can find a rational number. Again, this should be obvious to you, but we will prove
it.

Proof: Let ato b be an interval which we can shift by an integer until a and b are positive. Then by the

archimedean property there exists an n with % < b — a.Now let T be the set of natural numbers k such
thats = b. This is non-empty because there exists a k with k = bn. T is a non-empty set of natural
numbers so by the well ordering principle it has a minimal element m. Now consider mT_l Then we
know that mT_l < b since m-1 is less than the least k such that% = b by construction. So we just need
to show thatmT_1 > a.Suppose thatmT_1 < a, then % = mT_l +% <a-+ % < b since we picked n such

1 . . .
that - < b — a, butmisthe least element such that% > b, so this is a contradiction.

The irrationals are also dense in this sense. Proof: Between any two numbers we can find a rational
number, and we can find a second rational number between that one and one of our endpoints. Let

these rational numbers be pand q. Thenp + \% (q — p) is between p and g so certainly between our

original two numbers, butitis irrational.

Now we will talk about sequences, which are ennumerated collections of real numbers, or formally
we can consider them to be functions from the natural numbers to the real numbers. Sequences are
often written as a4, a,, as, ..., or we can write the whole sequence as (a,,)

Recall that a sequence tends to a limit if it eventually gets arbitrarily close to some value and stays
that close. The definition is elegant but it took mathematicians a long time to come up with a
definition that works.

For example (as we saw in previous levels), the sequence 0, 0.9, 0.99, 0.999, ... does indeed get closer
to 35, but we don’t want to say 35 is the limit because it does not get arbitrarily close to 35, we clearly
want the limit to be 1.

And we do not want things to just get arbitrarily close, we want them to stay that close. If we have a
sequence like1,2,1,1,2,1,1,1,2,1,1,1, 1, 2, ... does not stay arbitrarily close to 1. So we want to
make it precise that the sequence gets to and stays arbitrarily close to a limit.

A sequence converges if for any tolerance £€>0, no matter how small, we have that there is an N such
that whenever n>N, there exists a limit L such that L — ¢ < a,, < L + €. Then we say that the sequence
tends to the limit L. Or we can write that |a,, — L| < ¢.

We want to say that if we put a small buffer zone around the limit, the terms in the sequence will
eventually go to that buffer zone. As an example, here is what that looks like, we eventually stay in any

of the tolerance bands:




And recall that we want to think of |a — b| as the distance between a and b on our number line or on
the complex plane. And recall the triangle inequality: |a — c| < |a — b| + |b — c| which says that the
distance from Ato C is no more than the distance from A to B plus the distance from Bto C. So an
important trick we willuse alotis|la—c|=|la—b+b—c|<|la—b|+|b—c|.

. T | .
A sequence that does not converge diverges. A sequence goes to infinity if P 0. Asequenceis
n

bounded if there exists an M>0 such that |a,,| < M always, but bounded does not imply convergent.
However convergent does imply bounded: If we fix any € then after a;, we are at most L + ¢ then the
sequence is bounded after a; so the whole thing is bounded by max (a4, a,, ..., ax)-

Examples:

-1

3
i

wl N

0 1
) 2 )
Proof: The difference between atermand 1 is % but by the archimedean property for any € we can pick
annsuch that% < &.Sodone.

Example:
0 ! 0 ! 0 ! 0 0
-0,-,0,-,0,... >
)21 )4) 161 )

Proof: Given € > 0, pickn > ibythe archimedean property, then for any k>n, |a, — 0] is either 0 or%,

so less than g, so done.

Example:
1

! 0
= -
8’16’

1
P4P

N =

Proof: Given € > 0, pickn > éby the archimedean property. |a,| = zin < % < € again by the

archimedian property.

Proof of the inequality 2™ > n used above: For natural numbers 2" is the size of the power set of
{1, 2,...,n} which contains more than n elements since it contains {1}, {2}, ... ,{n} plus some more.

Example: (—1)" = —1,1,—1,1, ... does not converge to any limit. This is because for a band of width
less than -2, we cannot possibly make the sequence stay there. For all € < 1, this is never going to
work: We can never have it be such that both -1 and 1 are both within 0.5 of something.

We can write the definition of convergenceasVe >03IN eEN,LER:k>n=|a, —L| < e.lts
negation says there exists an € such that this is not true, therefore we can write
Je>0VNEN,LER: k>N # |a, — L| < eto mean a sequence does not converge. For

k > N # |a, — L| < € we can write that there is always a term where |as; — L| > & but I’'m too lazy to
also do that

Lecture 18:

Notice how this definition of a limit is more rigorous and precise than the hand wavy “infinitesimal”
that past mathematicians like Newton used to use.



Theorem: Limits are unique. This is fairly straight forward and intuitive enough that in the past we have
used it. But we will prove this from the definition. Let it be such that a and b are both limits of a

sequence, then for large enough n, |a, — a| < &, |a,, — b| < €. |dea: We cannot stay simaltaneously
|[b—al

within two disjoint bands. We want to set ¢ < ——, then we have |a, — a| + |a, — b| = |b —a| > 2¢
by the triangle inequality so we cannot have both |a,, — a| < ¢, |a,, — b| < . So done.

Definition: A sequence is eventually bounded if there exists an M>0 such that for alln>N, |a,,| < M.
Proposition: Every eventually bounded sequence is bounded.

Proof: It is bounded by Max(|a4|, |a;|, |as|, ..., |ay |, M).

Every convergent sequence is bounded as we proven in my notes from last lecture.

Any unbounded sequence does not necessarily tend to infinity in the limit: A counterexample is a
sequence like 0,1,0,2,0,3,0,4,0,5, ...

Definition: A sequence is monotonic if it is not strictly decreasing or not strictly increasing.

Theorem (monotone convergence theorem for sequences — the monotone convergence theorem for
integrals is different): Every bounded monotonic sequence converges. See level 4 for the proof (Itis in
the existence and uniqueness of e proof: we can add the detail to show it from the definition that if Lis
the least upper bound of a non-decreasing sequence then fix &, for any [ — € we have a greater term
since itis the least upper bound and all our terms are less than [ + € since that’s also an upper bound,
and similarly for non-increasing).

Remark: Boundedness is necessary: 1, 2, 3, 4, ... does not converge. We need a bound so the
sequence has something to converge to. We even know that convergence implies boundedness in
general.

We know now that the least upper bound property implies the monotone convergence theorem.
Theorem: The MCT implies the least upper bound property so we can use it as a definition in the reals
since they are equivalent, and we will prove this and come back to this in the analysis course.

Here is another “obvious” theorem: If a,, < d foralld and a,, = c then ¢ < d. (Itis not necessarily the
case thatif a,, < d and a,, = c then ¢ < d: consider -1/n with d=0)

Idea: If c>d we will have to get into a band above d which is not possible.
Proof: Lete < |d — c|. Then |a,, — c| < |d — c| implies a,, > d so we have a problem.
Proposition: The limit of the sum of convergent sequences is the sum of the limit

Proof: If a,, —» a, b, = b then eventually |a,, — al, |b,, — b| < 2 so by the triangle inequality

la, + b, —a—b| <e.

We could have put ¢ instead of %first and got 2¢ at the end, but that is ok because it does not change

the spirit of the convergence: it preserves the “arbitrarily small” idea.
Lecture 19:

As mentioned, an infinite sum is defined as the limit of the partial sums. le,



Yo, f(n) = lim X, f(r) when it exists.
T—00

We review the geometric series as an example and reproduce the proof that it converges if and only if
the common ratio is less than 1 in absolute value (cf level 4).

Proposition: Z;’{;l%is not finite. This may seem surprising — The terms go to 0, and even if you add 1

million terms you only get about 14 as the sum, so itis reasonable to think that this converges.
However, we will see an argument for why it does not converge, and why it diverges so slowly.

Proof: 145+ +2+ 4o+ 241+ >1+3+2()+4(5)+8(S)+ =142 +5+5+
2 3 4 5 6 7 8 2 4 8 16 2 2 2

which clearly diverges off to infinity. So done.
Proposition: In(x) < Zi‘pl% <1+1In(x)

Proof: If you’re being pedantic you might say we need to define the logarithm. But don’t worry: From all
the previous levels we know well what the logarithm is. The right hand side of the inequality was done
in the Level 6 pure mathematics document during a radius of convergence argument for proving series
solutions to differential equations work. The same argument can be adapted to get the left hand side

of the inequality. We will again use x=5 as an example, recalling that In(x) = flx%dt.

Red < Green: Stack them on top of eachother. Therefore Red + Purple < Green + Purple. But then this

inequality is exactly saying In(x) < Z;‘lzli. So done.

So, the series diverges — and diverges slowly — because it is approximately the logarithm. In fact, the
limit as x goes to infinity of 27);:1% — In (x) exists and is equal to one minus the area of what the infinite

red regions in the diagram above would be if we kept extending it: This limit is often called Y and is
approximately equal to 0.5772.

Personal story: When | was probably around 5 or 6 years old and playing around with my calculator
and tried the Zﬁzliseries, which is known as the harmonic series, | noticed that the sums like

i + % + % + %or% + 1io + -+ %6 used in the standard powers of 2 proof that were known to be at least a

half converged to a value around 0.693. It turns out from the logarithmic behavior from the proof
above that this value is exactly In(2).

. 1
Example: Lets consider Z;‘{’zln—z.

We can bound this as follows:

1+<1+1)+(1+1+1+1)+ <1+2+4+8+ —1+1+1+1+ =2
22 32 42 52 ' g2 ' 72 22 42 'g2' T2 4 8



Where we now group from 2 to 2¥*1 — 1. So we bound the series above by 2 and thus it converges

(bounded increasing sequences converge). But what does it converge to? This is a surprisingly deep
2
question and the answer turns out to be %. We do not need to prove this since it’s just a cool fact and

not something we will build work on — the point of the example was to prove convergence. A proof can
be found in the misc results section of the website (this infinite sum is called the basel problem).

To do proper rigorous proofs, we should really get bounds on the partial sums and not manipulate
infinite sums.

Now here is an important example: Let (d,,) be a sequence with d,, € {0,1,2,3,4,5,6,7,8,9}. Then
look at the series )5 1dTnn' This is the decimal expansion of the number we can write out as

0.d,d,d; ... Now note that the series is bounded below by 0 and bounded above by 1 since the partial
sums are increasing and each bounded above by 1. Also the series is bounded by its largest possible

value which is the series Y o— 17gn —, Which by a geometric series we can show that this is 1. We

sketched out a proof that this is 1 all the way backin Level 1.

We will now prove the obvious statement that every real number x between 0 and 1 has a decimal

expansion. As an example, we will try to reach x = § What happens isitis 0.3(stuff) because itis

between 110 and 110. We can carry on by bounding it between consecutive integers divided by 100, then

1000, etc then we get that it is 0.33333....... What happens is the difference between our x and the
fraction such as i ﬁ 333 ... gets arbitrarily small: itis less than i, which can be made smaller
10”100’ 1000’ 10m

than any £>0.

Now suppose 0.a;a,as ... = 0. by b, b5 ... and we want to know when this implies a; = b;. Lets suppose

that k is the first place where a and b differ. Lets say a; < by since it could be the other way and the
9

since if they differed by more then this tail sum would not be able differ enough to compensate. In

same idea holds. We know Zj —k+1 ﬁ)] <Yn lk. Therefore the only possibility is by = a; + 1,

fact, if b, = a; + 1 then the tails have to differ by = and thus must be 00000... and 99999... Therefore

decimal expansions are unique unless they end Wlth trailing O’s or trailing 9’s or equivalently if they

integer
1pinteger

can be written as that is the only way their decimal expansion is not unique.

Lecture 20:
Theorem: A decimal expansion is periodic (eventually repeats) if and only if the number is rational

Proof: Lets see one direction with an example, by doing something similar to what we would do in
GCSE maths:

147

 07832147147147147147 . — 1832 +0.147147147147 ... 7832 + 555 0.999999999
= T 10000 - 10000
147
_ 7832+ 459
10000

Which we can see must be rational.



Conversely, we want to show that any rational number has an eventually periodic decimal expansion.

p
2a5bqg

Ifx = %. We will rewrite thisas x = with a,b,p at least 0 and q a positive integer. And we want g to

be coprime to 10, ie we take out all factors of 2 and 5. We will now write:

bra
104+bx = %for non-negative integers c and d. If we show that this has a periodic decimal

expansion we are done since we just shifted by a+b units. We will write this as %ﬂ =n+ 2. But now g

and 10 are coprime which means that 10?(@ = 1 mod q by the fermat-euler theorem. Therefore we
know that 1099 — 1 = kq. We want to show that 2 has a periodic decimal expansion, but this is the

something
999999.....9999999

done. And we are ok since the numerator is not greater than the denominator so we have enough

2 = 0.124683124683124683124683 ... SO
999999

kc . . . .
same as v = which is periodic, for example

space.

Proposition: e is irrational

Proof: We know from the taylor series of e* evaluated atx=1thate =1+ 1 + % + % + i + -

b!

bl4b! b!
1+ .+?+§

b

+ol

Now suppose e = %. Thenwe knowthat1 + 1 + % + % + % + -+ % = . Itis easyto see

that the numberator is an integer:% =(x+1(x+2)..(b—1)bifxis aninteger less than b. But then

. b—1)! . . .
sincee = %, we know thate = a o ) , SO e is an integer divided by b!. Therefore,

e— (1 +1+ % + % + i Foet 5) must also be an integer divided by b!. But then

1 1 1 . . . 1. .
o0 T ) + Br3) + ---iswhat that is equal to, but that is between 0 and awhmh we will formally

show shortly, so we will have our contradiction.

. . 1 1 1
Basically, b is at least 1. Therefore BrD)! + oo T By

1 1 1 1 . . . ey .
= (m + BrD0+D) + BT DGID ) + .- ) But the stuff in the brackets is between 0 and 1, since it is

. 1 1 —1
strictly less than Pel + T (TOE

Therefore we have our contradiction. So done.

+ .-+, butbis atleast 1 so this is at most% +%+%+ ---whichis 1.

Proposition: The number L = Z;‘{’zlﬁ = 0.110001000000000000000001000 ... is transcendental

Proof: We will use the fact that for any polynomial p there exists a constant k such that

lp(x) —p(y)| < k(x — y) forxand y between 0 and 1, and this is because p has a maximum derivative
so kis at most that (by the mean value theorem, see differential equations lecture 2). We will use also
the fact that a polynomial of degree d that is non-zero has at most d real roots (it can’t have more than
d factors by the factor theorem). We will finish the proof next lecture.

Lecture 21:
Suppose L is the root of a polynomial p with integer coefficients and suppose this has finite degree d.

We see that 0<L<1. We know that there exists a k such that |[p(x) — p(y)| < k(x — y) forxandy
1

10k! S 10(n+1)!‘ NOW

between 0 and 1. Set Ly: = Yj_; — 50 that Ly, — L. Note that |L — Ly| = i

write d with integer coefficients as azx% + az_;x% ! + -+ + a;x + a, with az # 0. Notice also that



L, = = For some natural number s. But then p(L,) = %for some integer t. This will be non-zero for
n! 104*m:

sufficiently large values of n since otherwise there would be more than d roots if tis 0 infinitely many

times. Since p(L)=0 by assumption, we know that |p(L,,) — p(L)| = |p(L,)| = ﬁ. But then we have
for sufficiently large n that that 1< lp(L,) —p(L)| < k|L,—L| <

104dxn!

2k

oD But then when n is big

2k

enough, what will happen is that TomrD!

is much smaller because the denominator is much larger, so

we have a contradiction, so we are done.

This does not prove thate = ), — s transcendental but it turns out that itis (although this resultis

beyond the course).

A similar proof actually shows that if x is too good of a rational approximation, ie for all n there exists a

. N | .
ratlonalnumbersuchthatglswnhmq—nofx,thenX|stranscendental.

We can define the complex humbers as real-imaginary part pairs satisfying:

- (a,b)+(c,d)=(a+c,b+d)
- (a,b)*(c,d)=(ac-bd,ad+bc)

Which satisfies all the usual properties.

Definition: A set is countably infinite if it is infinite but in bijection with N. It is countable if itis
countably infinite or finite. Countable basically means we can list or ennumerate the elements of the
set.

Proposition: Z is countable.
Proof: 0,-1,1,-2,2,-3,3,...

Lemma: Any subset of N is countable.

Proof: Let S be a non empty subset of N. By the well ordering principle there is a least element s;.
There is also (if there are more elements) a second least element s,, then s3, etc. If at some point this
process ends we have a finite set which is countable. If not, the map n — s, is the bijection we need.
This is injective because these minimal elements are all different, and this is surjective because if kis
in S then kis a natural number and there are less than k elements in S less than k so we must hit it at

some point.
Lecture 22:
Threorem:
i) Xis countable if and only if there exists an injection from X->N
ii) If Xis non-empty, then Xis countable If and only if there is a surjection from N->X
Proof:
i) If Xis finite it obviously injects into N. If Xis countable it bijects to N so it injects into N.

Conversely, suppose Xinjects into N, then trivially X has a bijection to its image s where s is
a subset of N. If s is finite then so is X so done. If s is infinite then surely s is not uncountable
as this would make no sense, but the proofis that we can use our lemma from last lecture
that subsets of N are countable.



iii) If X is countable then either it is finite in which there is a trivial surjection N->X oritis
countably infinite so it is a bijection. So suppose fis a surjection N->X. So foreach ain X
pick the least element in N that maps to a which exists as it is a surjection then send each
elementin X to that one, then we have an injection as we cannot have two things in N send
to the same thing in X under the surjection and that would be the only way we have a many-
to-one under the map we just constructed. But then we have an injection X->N so X is
countable by (i).

Corollary: Any subset of a countable set is countable

Proof: Pick a bijection from our countable setto N. Then the image in N of our subset is countable by
the fact that any subset of N is countable and in bijection with our subset, so done.

We can view countability as saying a set is not fundamentally bigger than N.

Theorem: NxN is countable.

Proof:
o L L ] [ ]
L ] L ] L ] [ ]
[ ] L ] L ] L ]
L 2 L ] L ] ]

(Image of a proof. Note that for every element we can pick a finite number x and say
this is the x’th element, which is why we can ennume)

Alternative proof:

Lets use the previous theorem and construct an injection from Nx N to N. We can do this by sending
each pair (a,b) to 2¢3® which is an injection by uniqueness of prime factorization.

Proposition: ZxZ is countable.

Proof:
L ] L a E & | E |
- A
- - L
* 2 Lm 2,00 450
] L | : . & : | E |
Image of a proof

Theorem: Q is countable

Proof: Q is in bijection with the subset of ZxZ where (a,b) written as % isin lowestterms and b is not 0.

And subsets of countable sets are countable.

Theorem: A countable union of countable sets A, , is countable. le, we’ve been given a list of
countably many countable sets and we wish to show the union is countable.



Idea: Itis clearly a subset of NxN
Proof: For each A, list the elements like A;1, 4;3, Aj3, ...*
*(For vectors and matrices students, no we are not doing the summation convention)

Foreach x = 4;; inthe union, pick an instance of x as your representative, eg by doing the least i such
thatitis in the i’th set (since only one instance of the same element is allowed in the union) and send
itto 2¢37, so we have an injection to N so done.

Theorem: A (the set of algebraic numbers) is countable.

Proof: We just need to show that the set of all polynomials with integer coefficients is countable
because each one just has a finite number of roots because then A would be a countable union of
finite sets. We just need to show that the set of polynomials with integer coefficients of a fixed degree
is countable because then we just have to take the countable union of all those. But then the set of
degree k polynomials is exactly the same as Z¥*1, but this is countable because by induction, N is
countable so if Z¥ is countable then |Z¥*1| = |Z¥ x Z| = |Z x Z| = |N| where when | say these are
equall mean there is a bijection between them, by the induction hypothesis and a previous theorem
onZ x Z. So done.

Theorem: R is uncountable
Proof: See level 6 technical results
Corrolary: Transcendental numbers exist, in fact there are uncountably many of them

Proof: If all real numbers were algebraic they would be countable so this is a contradiction. If there
were countably many then the reals would be a union of two countable sets which is also a
contradiction.

Lecture 23:

Recall that we can use a diagonal argument to show that R (and in fact any interval) is uncountable.
We can use the same argument to show that a set does not have a bijection to its power set. We will
do this proof now.

So suppose, for example, that N has a bijection to its power set. Then in each subset in our list, each
natural number will either be in (Y for yes) or not (N for no) in the list. So as an example we can write it
in a table like this:

Y (IN|Y
NIN|Y
N|Y |N

Now highlight the diagonal elements. Then flip them, so in this example we get NYY... . Then this is not
in our list. So contradiction, so done.

We can write this formallyas S = {n € N:n € S, } and we can apply this to any set. This gives a pretty
elegant way to see the inequality 2™ > n.

It turns out that |P(N)| = |R|. This is an interesting fact and we will prove this next lecture.



Note that |R| = |(0,1)| because we can do tan (n (x + %)) as a bijection.

Alternative proof that P(N) is uncountable: We want to find an injection from (0,1) to P(N). To do this
we pick something between 0 and 1 and write x in binary or base 2 (as in the place values differ by a
factor of two instead of ten and the digits are 0 or 1). Then consider the terminating binary expansion
(ie, if there is a not unique one, pick the one without an infinite string of 1’s). Then if at the k’th digit
there is a 1, make it so kis in the subset of N that that maps to. We can think of this as turning 0’s to
N’s and 1’s to Y’s. As an example, 0.11101 in binary will map to the subset {1, 2, 3, 5}. Therefore if there
was an injection from N —» P(N) we could pick the elements in P(N) that get mapped to from our
injection (0,1) —» P(N) and pick the elements in N that map to those to get a surjection from a subset
of N to (0,1), which we can turn into a surjection N = (0,1), which we know is impossible. So done.

Note that there is no set of all sets or else it would contain its power set as thatis a set.

Example: Consider a family of open pairwise disjoint intervals A; of the reals. Then this is countable
because we cannot have an uncountable set of non-zero things add up to a finite number (Level 6
technical results), which would have to happen because we could arctan everything in the reals
including the open intervals and then get such a sum that contradicts this. An alternative proof is that
each interval contains a rational number but then if the set was uncountable we would have
uncountably many rational numbers. Another alternative proof is a variation of the level 6 technical
results proof of the related fact that we cannot add uncountably many numbers and get a finite

N | =
-

number: The set of sets with a length at least 1 is countable, so is the set of intervals with length >

1 . . ..
= 3 and so on, then we have a countable union of countable sets (every intervalis in one by the

archimedian property), so the set of all the intervals is countable.
Lecture 24:

Summary of what we’ve done so far:

Xis countable if

i) There is an injection Xto N
i) You can ennumerate it
iii) Itis a countable union of countable sets

Xis uncountable if

i) We can run a diagonal argument to show that there is no surjection N to X
i) X has an injection to another uncountable set

Intuitively we think of existence of a bijection to mean sets have the same size. It’s like we have an
equivalence relation of sizes by existence of a bijection.

Intuitively we think of “Ainjects to B” to mean “A is at most as big as B” and “A surjects to B” to mean
“Ais at least as big as B”. For this to make sense, we need to formally prove that if A has both an
injection and a surjection to B then there is a bijection Ato B, and also that that “Ainjects to B” is
equivalent to “B surjects to A”.

Lemma: Given non-empty sets A and B, the existence of an injection f from A to B is equivalent to the
existence of a surjection g from B to A.



Proof: Define g: B — A by sending f(a,) — a, for each a, in A and for an element not in the image of f
sending it to anything. This gives a surjection g from B to A. Conversely, if g is a surjection, then
partition B into the pre-images of each elementin A. Then pick each ain A to get set to somethingin
the corresponding pre-image to get an injection.

Lemma: If there is both an injection (f) and a surjection (t) from A — B then there is also a bijection (h).
We can interpret this to mean that |[A| < |B| < |[A| = |A| = |B|

Proof: Note that by the previous lemma there is an injection gfrom B — A. Foreach ain A, pick the
element g~1(a) in Bin the pre-image of A if it exists, then pick the pre-image of that in A if it exists, ie
f~1(g97(a)), then consider the sequence of these pre-images: ... g~ (f “1(g (... and we will call this
the ancestor sequence of a, as itis talking about where a came from. These sequences will either
continue infinitely, or have an even number of steps, or have an odd number of steps. Let 4, be the set
of ain A whose ancestor sequences terminate after an even number of steps, ie the last pointis in our
set A. Now let A; be the set of a in Athat end in an odd number of steps, and A, be those such that
the ancestor sequence does not terminate. Do the same for B. Now note that we can construct
bijections between the following partitions: A, = By, 4; = By, Ax — B, then we can construct a
bijection out of those three. f must biject A, — B;: itis aninjection because fis aninjection, and itis a
surjection because everything in B; has an odd number of ancestors so for each b in By, f ~1(b) exists
andisin A,, so we have a surjection as b was arbitrary. Now note that for every ain 4;, we must have
that g~1(a) exists and is in 4,, and we have a surjection because each b comes from g(b) and an
injection because g~1(a) = g~1(b) implies a = b because if a # b then since g is a function we must
have that g~1(a) # g~1(b). Now we have a bijection A,, = By, by f, which is clearly an injection, and it
is a surjection because for each b in B, by definition there is an f~1(b) in A,. So we can write our

f(x):x € A
bijection as follows: h(x) =< g 1(x):x € 4;

f(x):ix € Ay

Example: We have a bijection [0,1] — [0,1] U [2,3] because we have a surjection by (3x or something
else if thisisin (1/3, 2/3)) and an injection by the identity map.

And that is the end of the course.



